Binary Operations

 $+4b^2$ be a

2. Let * is a binary operation on the set of all non-zero real numbers, given by $a * b = \frac{ab}{5}$ for all $a, b \in R - \{0\}$. Find the value of x, given that 2 * (x * 5) = 10. Delhi 2014

Given,
$$a * b = \frac{ab}{5}$$
, $\forall a, b \in R - \{0\}$...(i)

Also given, 2 * (x * 5) = 10

$$\Rightarrow 2*\left(\frac{x\cdot 5}{5}\right)=10$$
 [from Eq. (i)]

$$\Rightarrow 2 * x = 10 \Rightarrow \frac{2x}{5} = 10 \Rightarrow x = 25$$
 (1)

3. Let * is a binary operation on N given by a*b = LCM(a, b) for all $a, b \in N$. Find 5*7. Delhi 2012; Foreign 2008

Given,
$$a * b = LCM (a, b), ∀ a, b ∈ N$$

∴ $5 * 7 = LCM (5, 7) = 35$

4. Let *: $R \times R \to R$ is defined as a * b = 2a + b. Find (2 * 3) * 4. All India 2012

Given, *:
$$R \times R \to R$$

such that $a * b = 2a + b$.
On putting $a = 2$ and $b = 3$, we get

$$(2 * 3) = 2 (2) + 3 = 4 + 3 = 7$$

$$\therefore (2 * 3) * 4 = 7 * 4 = 2 (7) + 4 = 14 + 4 = 18(1)$$

5. If the binary operation * on the set of integers Z, is defined by $a * b = a + 3b^2$, then find the value of 8*3. All India 2012C

Given,
$$a * b = a + 3b^2$$
, $\forall a, b \in z$
On putting $a = 8$ and $b = 3$, we get $8 * 3 = 8 + 3 \cdot 3^2 = 8 + 27 = 35$

6. Let * is a binary operation on set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5. All India 2011C

Given,
$$a * b = 3a + 4b - 2$$

On putting
$$a = 4$$
 and $b = 5$, we get
 $4*5 = 3(4) + 4(5) - 2$
 $= 12 + 20 - 2 = 30$

7. Let * is a binary operation on set of integers l, defined by a * b = 2a + b - 3. Find value of 3*4. Delhi 2011C; All India 2008

Given,
$$a * b = 2a + b - 3$$

On putting
$$a = 3$$
 and $b = 4$, we get $3*4 = 2(3) + 4 - 3$
= $6 + 4 - 3 = 7$

8. If the binary operation * on set of integers Z is defined by $a * b = a + 3b^2$, then find the value of 2 * 4. Delhi 2009

Do same as Que 5.

[Ans. 50]

9. Let * is the binary operation on N given by a*b = HCF(a, b) where, $a, b \in N$. Write the value of 22 * 4. All India 2009

Given, a*b = HCF of a and b, where a and $b \in N$.

Now,
$$22 * 4 = HCF$$
 of 22 and 4
= HCF of (2×11) and $(2 \times 2) = 2$
 $\therefore 22 * 4 = 2$ (1)

10. If the binary operation *, defined on Q, is defined as a * b = 2a + b - ab, for all as $b \in Q$. Find the value of 3 * 4. Foreign 2009

Given, a * b = 2a + b - ab, $\forall a, b \in Q$.

On putting
$$a = 3$$
 and $b = 4$, we get $3*4=2\cdot 3+4-3\cdot 4$
= $6+4-12=-2$

11. If * is a binary operation on set Q of rational numbers defined as $a * b = \frac{ab}{5}$. Write the identity for *, if any. All India 2009C; HOTS

Given, binary operation is $a * b = \frac{ab}{5}$.

Let e be the identity element of * on Q.

Then,
$$a * e = a, \forall a \in Q$$
 [by definition of identity element]

12. If S is the set of all rational numbers except 1 and * be defined on S by a * b = a + b - ab, for all $a,b \in s$.

Prove that

- (i) * is a binary operation on S.
- (ii) * is commutative as well as associative.

Delhi 2014C

 (i) We know that, addition of two rational numbers is a rational number. Also, multiplication of two rational numbers is also a rational number.

Here, a and b are rational numbers other than 1. So, a + b - ab is also a rational number [since difference of two rational numbers is rational number]. So, * is a binary operation on set S. (1)

(ii) Commutative

$$a*b=a+b-ab=b+a-ba$$
 $\Rightarrow a*b=b*a$

Hence, * is commutative. (1)

Associative $(a*b)*c$
 $= (a+b-ab)*c$
 $= a+b-ab+c-(a+b-ab)c$
 $= a+b+c-ab-bc-ac+abc...(i)$ (1)

and $a*(b*c)=a*(b+c-bc)$
 $= a+b+c-bc-a(b+c-bc)$
 $= a+b+c-ab-bc-(ac+abc)$...(ii)

From Eqs. (i) and (ii), we get

 $(a*b)*c=a*(a*c)$

Hence, * is associative. (1)

13. Consider the binary operations *: R × R → R and o: R × R → R defined as a * b = |a - b| and a o b = a. For all a, b ∈ R. Show that * is commutative but not associative, 'o' is associative but not commutative.

All India 2012

Given $*: R \times R \rightarrow R$ such that a * b = |a - b| and $a \circ b = a, \forall a, b \in R$.

We have to show that, * is commutative but not associative.

(i) Commutative

$$a*b=|a-b|, \forall a,b \in R$$
 [given]
and $b*a=|b-a| \forall a,b \in R$
 $=|-(a-b)|$
 $=|a-b|$ [:: $|-x|=|x|, \forall x \in R$]
Thus, $a*b=b*a, \forall a,b \in R$
Hence, * is commutative. (1)

14. Consider the binary operation * on the set $\{1, 2, 3, 4, 5\}$ defined by $a * b = \min\{a, b\}$. Write operation table of operation *.

Delhi 2011

Given, binary operation is $a * b = \min \{a, b\}$ defined on the set $\{1, 2, 3, 4, 5\}$. (1/2) The operation table for operation * is given as follows:

		-			
*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4 .	1	2	3	4	4
5	1	2	3	4	5

15. A binary operation * on the set
$$\{0, 1, 2, 3, 4, 5\}$$
 is defined as $a * b = \begin{cases} a + b, & \text{if } a + b < 6 \\ a + b - 6, & \text{if } a + b \ge 6 \end{cases}$.

Show that zero is the identity for this operation and each element 'a' of the set is invertible with 6 - a, being the inverse of 'a'.

All India 2011; HOTS

Given
$$a * b =$$

$$\begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$$

The operation table for * is as follows:

*	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

$$[\because 0 + 0 < 6 \Rightarrow 0 + 0 = 0; 0 + 1 < 6 \Rightarrow 0 + 1 = 1; ... 1 + 4 < 6 \Rightarrow 1 + 4 = 5; 1 + 5 \ge 6 \Rightarrow 1 + 5 - 6 = 0; ...]$$

From table, we note that

- (i) a * 0 = 0 * a = a. Hence, 0 is the identity for an operation. (1)
- (ii) 1*5 = 0, 2*4 = 0, 3*3 = 0, 4*2 = 0, 5*1=0

Hence, inverse of 1 is 5, i.e.for element a, 6 – a is its inverse. (1)

16. If * is a binary operation on Q, defined by a*b = 3ab / 5. Show that * is commutative as well as associative. Also, find its identity, if it exists.
Delhi 2010

Given, binary operation is

$$a * b = \frac{3ab}{5}, a, b \in Q$$

(i) **Commutative** $a * b = \frac{3ab}{5}$ [given]

and
$$b * a = \frac{3ba}{5}$$

[by using definition of *]

$$\therefore \frac{3ab}{5} = \frac{3ba}{5}, \forall a, b \in Q \text{ is true}$$

$$\therefore$$
 $a * b = b * a, \forall a, b \in Q$

Therefore, * is commutative.

(1)

(ii) Associative

$$a*(b*c) = a*\left(\frac{3bc}{5}\right) \left[\text{using } a*b = \frac{3ab}{5}\right]$$
$$= \frac{3a\left(\frac{3bc}{5}\right)}{5} = \frac{9abc}{25}$$
and
$$(a*b)*c = \left(\frac{3ab}{5}\right)*c$$
$$\begin{bmatrix} 3ab & 3$$

$$\left[\because a*b = \frac{3ab}{5}, \forall a, b \in Q\right]$$

$$=\frac{3\left(\frac{3ab}{5}\right)(c)}{5}=\frac{9abc}{25}$$

Clearly, a*(b*c) = (a*b)*c, $\forall a, b, c \in Q$

Therefore, * is associative.

(2)

(iii) Existence of identity Let e be the identity element of * on Q. Then, by definition of identity element, we must have

$$a * e = e * a = a, \forall a \in Q$$
Let
$$a * e = a, \forall a \in Q$$

$$\Rightarrow \frac{3ae}{5} = a \left[\because a * b = \frac{3ab}{5} \right]$$

$$\Rightarrow e = \frac{5}{3} \in Q$$

∴
$$e = \frac{5}{3}$$
 is the identity element of * defined on Q. (1)

17. If $A = N \times N$ and * is a binary operation on A defined by (a,b) * (c,d) = (a+c,b+d). Show that * is commutative and associative. Also, find identity element for * on A, if any.

Foreign 2010

The given binary operation is

$$(a, b) * (c, d) = (a + c, b + d)$$

defined on $A = N \times N$, we have to show that * is commutative and associative.

(i) Commutative

$$(a, b) * (c, d) = (a + c, b + d),$$

 $\forall (a, b) (c, d) \in N \times N$ [given]...(i)
Also, $(c, d) * (a, b) = (c + a, d + b)$

$$\forall (a, b), (c, d) \in N \times N$$
 ... (ii)

Since,
$$a+c=c+a, \forall a, c \in N$$

and
$$b+d=d+b, \forall b, d \in N$$

From Eqs. (i) and (ii), we get

$$(a + c, b + d) = (c + a, b + d),$$

 $\forall a, b, c, d \in N$

$$\Rightarrow (a, b) * (c, d) = (c, d) * (a, b),$$
$$\forall (a, b) (c, d) \in N \times N$$

(ii) **Associative**
$$(a, b) * [(c, d) * (e, f)]$$

$$= (a, b) * (c + e, d + f)$$

[using given definition of *]

$$= (a + c + e, b + d + f)$$
 ...(i)

Also,
$$[(a, b) * (c, d)] * (e, f)$$

= $(a + c, b + d) * (e, f)$

[using definition of *]

$$= (a + c + e, b + d + f)$$
 ...(ii)

From Eqs. (i) and (ii), we get

$$(a, b) * [(c, d) * (e, f)] = [(a, b) * (c, d)] * (e, f)$$

 $\forall (a, b), (c, d), (e, f) \in N \times N$ (2)

$$\forall$$
 (a, b), (c, d), (e, f) \in N \times N

Therefore * is associative.

(iii) Now, we check the existence of identity of the given operation *.

Let if possible (s, t) be the identity element of the operation *. Then, by definition of identity, we must have

$$(a, b) * (s, t) = (a, b), \forall (a, b), (s, t) \in N \times N$$

$$\Rightarrow$$
 $(a+s,b+t)=(a,b)$

[::
$$(a, b) * (c, d) = (a + c, b + d)$$
 is given]

On equating corresponding elements, we get

$$a + s = a \qquad \dots (i)$$

and

$$b+t=b$$

Eqs. (i) and (ii) are true, when s = 0 and t = 0

$$\therefore \qquad (s,t)=(0,0)$$

But

$$(0,0) \notin N \times N$$

⇒ Identity of the above operation * does not exist as there does not exist any $(s,t) \in N \times N$ such that

$$(a, b) * (s, t) = (a, b), \forall (a, b) \in N \times N$$
 (1)

18. If * is the binary operation on N given by a * b = LCM of a and b. Find 20 * 16. Is * (i) commutative and (ii) associative?

All India 2008C

Given a * b = LCM of a and b

LCM of 20 and 16 = 80

$$\therefore$$
 20 * 16 = 80 (1)

(i) Commutative

$$a * b = LCM \text{ of } a \text{ and } b$$
 [given]
and $b * a = LCM \text{ of } b \text{ and } a$
= $LCM \text{ of } (b \text{ and } a), \forall a, b \in Q$

and
$$a * b = b * a, \forall a, b \in Q$$

Therefore, * is commutative. (1½)

(ii) Associative a * (b * c) = a * (LCM of b and c)

[:
$$a * b = LCM \text{ of } a \text{ and } b$$
]

$$\Rightarrow$$
 a * (b * c) = LCM of (a, b and c) ...(i)

and
$$(a * b) * c = (LCM \text{ of } a \text{ and } b) * c$$

$$\Rightarrow$$
 $(a * b) * c = LCM of (a, b and c) ...(ii)$

From Eqs. (i) and (ii), we get

$$a * (b * c) = (a * b) * c, \forall a, b, c, \in Q$$

Therefore, * is associative. (1½)

19. If * is a binary operation on set Q of rational numbers such that $a*b = (2a - b)^2$, $a, b \in Q$. Find 3*5, 5*3. Is 3*5 = 5*3? Delhi 2008C

The given binary operation is

$$a * b = (2a - b)^2$$
, $a, b \in Q$

$$3*5 = [2(3) - 5]^2$$

[put
$$a = 3$$
 and $b = 5$ in $a * b = (2a - b)^2$]

$$= (6-5)^2 = (1)^2 = 1$$
 (1½)

Also,
$$5 * 3 = [2(5) - 3]^2$$

[put
$$a = 5$$
 and $b = 3$ in $a * b = (2a - b)^2$]

$$=(10-3)^2=(7)^2=49$$
 (1½)

Clearly, from above
$$3*5 \neq 5*3$$
 (1)